L.S.B.Amri

Mr: Sai Fethi

Devoir de synthèse

Durée: 3.h

25-05-09

Classe 3ème sc -exp1

MATHEMATIQUES

Exercice 1 (3points):

Pour chacun des trois questions, une seule des propositions est exacte. Une réponse exacte (avec justification) rapporte un point, une réponse inexacte enlève 0,5 point, l'absence de réponse est compté 0 point. Si le total est négatif, la note est ramenée à 0.

- 1) Soit la suite (U) définie par : $u_n = -(\frac{1}{3})^n \ \forall \ n \in \mathbb{N}$.
 - a) La suite (U) est arithmétique.
 - b) $\lim_{n\to +\infty} u_n = +\infty$
 - c) La suite (U) est croissante.
 - d) La suite (U) est décroissante.
- 2) (O,i,j,k) est un repère orthonormé.

Soit la droite D: $\begin{cases} x=1+\alpha\\ y=-2-\alpha\\ z=3-3\alpha \end{cases}$ $(\alpha\in\mathbb{R})$ et le plan P :2x-y+z-3=0.

- a) La droite D est contenue dans le plan P.
- b) La droite D est strictement parallèle au plan P.

3)
$$\lim_{x\to 0} \frac{1-\cos(2x)}{x^2}$$
 est:

a)0 b)
$$\frac{1}{2}$$

Exercice 2 (4points):

Dans un carnet de santé, on peut lire le poids d'un enfant et sa naissance à 12 ans.

$Age(x_i)$ en	0	1	2	4	7	11	12
années							
Poids (y_i) en	3,4	7	10, 5	14,5	20,5	33	37,5
kg							

- 1) Représenter dans un repère orthogonal le nuage des points de cette
- 2) Calculer la moyenne, la variance et l'écart-type de chacune des variables x et y.

3) On scinde l'ensemble des 7 points du nuage en deux parties. La première partie (1) correspond aux sujets 1 à 4 et la deuxième partie (2) correspond aux sujets 5 à 7.

On désigne par G_1 et G_2 les points moyens respectifs de la partie (1) et de la partie (2).

- a) Donner une équation de la droite de Mayer (G_1G_2).
- b) Quel est le poids qu'on peut prévoir pour cet enfant à l'âge de 18 ans ?

Exercice 3(4 points):

Soit la suite (U) définie par :

$$\begin{cases} u_0 = 4 \\ u_{n+1} = \frac{4u_n - 3}{u_n} = 4 - \frac{3}{u_n} \forall n \in \mathbb{N} \end{cases}$$

- 1) Montrer que $\forall n \in \mathbb{N} : u_n > 3$.
- 2) Montrer que la suite (U) est décroissante $\operatorname{sur} \mathbb{N}$.
- 3) Soit la suite (V) définie par : $\forall n \in \mathbb{N} : v_n = u_n 3$.
 - a) Montrer que : $\forall n \in \mathbb{N} : v_{n+1} \prec \frac{1}{3}v_n$.
 - b) Montrer que : $\forall n \in \mathbb{N}^* : 0 \prec v_n \prec (\frac{1}{3})^n$.
 - c) Déterminer $\lim_{n\to +\infty} (\frac{1}{3})^n$.
 - d) En déduire $\lim_{n \to +\infty} v_n$ puis $\lim_{n \to +\infty} u_n$

Exercice 4 (6 points):

Soit R $\left(O; \vec{i}; \vec{j}; \vec{k}\right)$ un repère orthonormé de l'espace ξ .

On donne les points A (1, 1,-1), B (1,-1 ,2) et C (3, 1,-1) .

- 1- Donner une représentation paramétrique de la droite (AB).
- 2- Le point E(2,1,1)appartient t-il à la droite (AB) ?
- 3- Etudier la position relative de la droite (AB) et la droite D définie par :

$$D: \begin{cases} x=2 \\ y=1+3\alpha & (\alpha \in \mathbb{R}) \\ z=1+2\alpha \end{cases}$$

- 4- a) Montrer que les points A, B, C ne sont pas alignés.
 - b) Donner une équation cartésienne du plan (ABC).
 - c) Montrer que D est perpendiculaire au plan (ABC).
 - d) Montrer que E appartient au plan médiateur P du segment $\left[AC
 ight]$.

5) Montrer que (D) est contenue dans le plan P.

Exercice 5(3 points):

Soit la fonction f définie sur \mathbb{R} par : $f(x) = 2\sin(2x - \frac{\pi}{6})$.

- 1)~ Montrer que f est périodique de période $\hspace{-0.5pt}^{\pi}$.
- 2) Montrer que f' s'annule sur $\left[\,0,\pi\,\right]$ en $\frac{\pi}{3}$ et $\frac{5\pi}{6}$.
- 3) Etudier les variations de f $\sup \bigl[\,0,\!\pi\,\,\bigr]$.

Bon travail