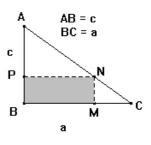
Problèmes d'optimisation

Exercice 1:

Soit un triangle ABC rectangle en B avec AB = c et BC = a.

M est un point quelconque du segment] BC[, $N = p_{(AB)}(M) \in (AC)$ et $P = p_{(BC)}(N) \in (AB)$. Le quadrilatère MNPB ainsi construit est un rectangle.

Etudier les variations du périmètre et de l'aire du rectangle BMNP.

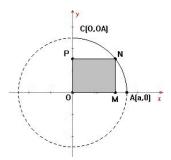


Exercice 2:

Soit un R.O.N. $\mathcal{R} = (O, \vec{u}, \vec{v})$, le cercle $\mathscr{C}(O,OA)$, A(a,0) et a > 0.

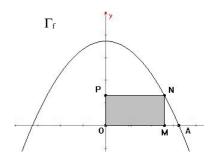
M est un point du segment] O,A[.

Etudier les variations de l'aire du rectangle OMNP, où N est le point du cercle \mathscr{C} tel que (MN) // (OJ) et P = $p_{(OA)}(N) \in (OJ)$.



Exercice 3:

Soit un R.O.N. $\mathcal{R} = (O, \overrightarrow{u}, \overrightarrow{v})$, , le graphique Γ_f de la fonction f définie par $y = f(x) = ax^2 + bx + c$, et a < 0, c > 0 et b = 0. M est un point du segment] O,A[et $A \in \Gamma_f \cap [O,I]$. Etudier les variations de l'aire du rectangle OMNP, où N est le point du graphique Γ_f tel que (MN) // (OJ) et $P = p_{(OA)}(N) \in (OJ)$.



Exercice 4:

Soit un R.O.N. $\mathcal{R} = (0, \vec{u}, \vec{v})$, et la fonction f définie par $y = f(x) = \frac{2}{3}\sqrt{1-x^2}$.

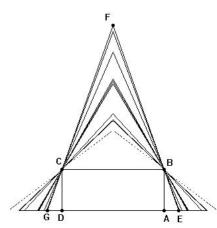
M est un point du segment]O,A[et $A \in \Gamma_f \cap [O,I)$.

Etudier les variations de l'aire du rectangle OMNP, où N est le point du graphique Γ_f tel que (MN) // (OJ) et $P = p_{(OA)}(N) \in (OJ)$.

Exercice 5:

Soit un rectangle ABCD de côté AB=a et BC=b et triangle isocèle exinscrit EFG.

Etudier les variations de l'aire de ce triangle.



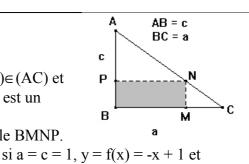
Problèmes d'optimisation corrigés

Exercice 1:

Soit un triangle ABC rectangle en B avec AB = c et BC = a.

M est un point quelconque du segment] BC[, $N = p_{(AB)}(M) \in (AC)$ et $P = p_{(BC)}(N) \in (AB)$. Le quadrilatère MNPB ainsi construit est un rectangle.

Etudier les variations du périmètre et de l'aire du rectangle BMNP.



Posons la variable x = BM et le paramètre y = BP

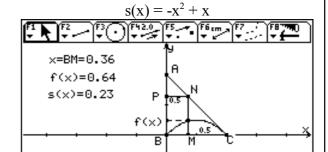
Aire : $s(x) = BM \cdot BP = x \cdot y$; or y = f(x) si $(AC) = \Gamma_f$ équation de (AC):

$$y - y_0 = m(x - x_0)$$
 et $x_0 = 0$, $y_0 = c$ et $m = \frac{0 - c}{a - 0}$

$$\Leftrightarrow$$
 $y = \frac{-c}{a} x + c = f(x)$

d'où
$$s(x) = x \cdot (\frac{-c}{a}x + c) = \frac{-c}{a}x^2 + cx$$

et
$$s'(x) = \frac{-2c}{a}x + c = 0 \Leftrightarrow x = \frac{a}{2}$$
: M milieu de [B,C] $s'(x) = -2x + 1 = 0 \Leftrightarrow x = \frac{1}{2}$ (maximum)

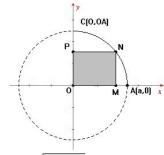


$$s'(x) = -2x + 1 = 0 \Leftrightarrow x = \frac{1}{2} (maximum)$$

Exercice 2:

Soit un R.O.N. $\mathcal{R} = (O, A)$, le cercle $\mathscr{C}(O,OA)$, A(a,0) et a > 0. M est un point du segment]O,A[.

Etudier les variations de l'aire du rectangle OMNP, où N est le point du cercle \mathscr{C} tel que (MN) // (OJ) et P = $p_{(OA)}(N) \in (OJ)$.



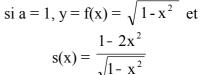
Posons la variable x = OM et le paramètre y = OP

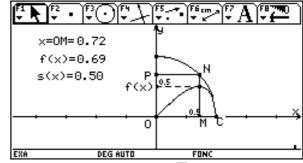
Aire : $s(x) = OM \cdot OP = x \cdot y$; or y = f(x) si car $N \in \Gamma_f$

d'où
$$s(x) = x \cdot \sqrt{a^2 - x^2}$$

et
$$s'(x) = \sqrt{a^2 - x^2} + x \cdot \frac{-x}{\sqrt{a^2 - x^2}} = \frac{a^2 - 2x^2}{\sqrt{a^2 - x^2}}$$

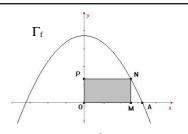
et
$$s'(x) = 0 \Leftrightarrow a^2 - 2x^2 = 0 \Leftrightarrow x = \pm \frac{\sqrt{2}}{2}a$$





$$s'(x) = 1 - 2x^2 = 0 \Leftrightarrow x = \frac{\sqrt{2}}{2} \approx 0.707 \text{ (maximum)}$$

Exercice 3: Soit un R.O.N. $\mathcal{R} = (O, ,)$, le graphique Γ_f de la fonction f définie par $y = f(x) = ax^2 + bx + c$, et a < 0, c > 0 et b = 0. M est un point du segment]O,A[et $A \in \Gamma_f \cap [O,I)$. Etudier les variations de l'aire du rectangle OMNP, où N est le point du graphique Γ_f tel que (MN) // (OJ) et $P = p_{(OA)}(N) \in (OJ)$.



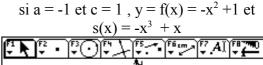
Posons la variable x = OM et le paramètre y = OP

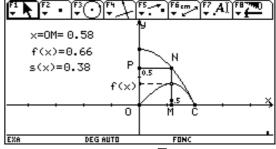
Aire : $s(x) = OM \cdot OP = x \cdot y$; or y = f(x) si car $N \in \Gamma_f$

d'où $s(x) = x \cdot (ax^2 + c) = ax^3 + cx$

et $s'(x) = 3ax^2 + c$

et $s'(x) = 0 \Leftrightarrow 3ax^2 + c = 0 \Leftrightarrow x = \pm \sqrt{\frac{-c}{3a}}$





 $s'(x) = -3x^2 + 1 = 0 \Leftrightarrow x = \frac{\sqrt{3}}{3} \approx 0.577$ (maximum)

Exercice 4: Soit un R.O.N. $\Re = (O, ,)$ et la fonction f définie par $y = f(x) = \frac{2}{3}\sqrt{1-x^2}$.

M est un point du segment]O,A[et $A \in \Gamma_f \cap [O,I)$. Etudier les variations de l'aire du rectangle OMNP, où N est le point du graphique Γ_f tel que (MN) // (OJ) et $P = p_{(OA)}(N) \in (OJ)$.

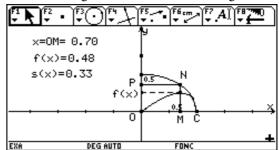
Posons la variable x = OM et le paramètre y = OPAire : $s(x) = OM \cdot OP = x \cdot y$; or y = f(x) si car $N \in \Gamma_f$

d'où
$$s(x) = x \cdot \frac{2}{3} \sqrt{1 - x^2}$$

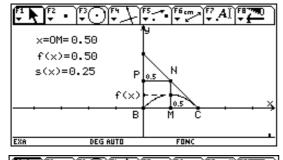
et
$$s'(x) = \frac{2}{3} \left[\sqrt{1 - x^2} + x \frac{-x}{\sqrt{1 - x^2}} \right] = \frac{2}{3} \left[\frac{1 - 2x^2}{\sqrt{1 - x^2}} \right]$$

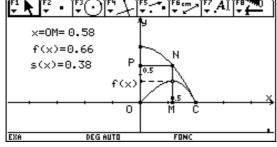
et
$$s'(x) = 0 \Leftrightarrow 1 - 2x^2 = 0 \Leftrightarrow x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2}$$

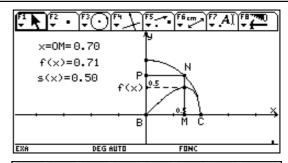
si $y = f(x) = \frac{2}{3}\sqrt{1-x^2}$ et $s(x) = x \cdot \frac{2}{3}\sqrt{1-x^2}$

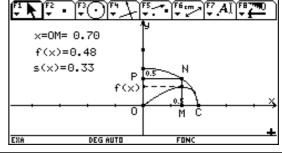


$$s'(x) = 0 \Leftrightarrow x = \frac{\sqrt{2}}{2} \approx 0,707 \ (maximum)$$









Exercice 5 : Corrigé

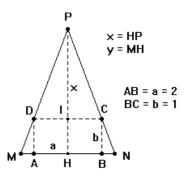
Déterminer la fonction a qui donne l'aire a(x) d'un triangle isocèle Δ MNP circonscrit à un rectangle fixe ABCD dont les dimensions sont AB = a = 2 et BC = b = 1, avec x = HP, hauteur du triangle Δ MNP, comme variable.

- \checkmark constantes : a = 2 et b = 1
- **♥** fonction : aire = base · hauteur = $\frac{1}{2}$ MN · HP = MH · HP = y · x
- \lor variable : HP = x, avec 1 < x
- \mathbf{v} paramètre : MH = y
- ♥ calcul de a(x): $a(x) = y \cdot x$; exprimons y en fonction des constantes et de la variable x:

avec le théorème de Thalès dans ΔMHP et ΔDIP ,

on a
$$\frac{MH}{DI} = \frac{PH}{PI} = \left(\frac{MP}{DP}\right) \Rightarrow \frac{y}{1} = \frac{x}{x-1}$$

ainsi, $a(x) = y \cdot x = \frac{x}{x-1} \cdot x = \frac{x^2}{x-1}$



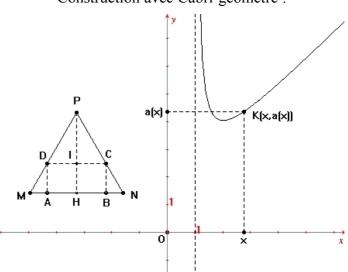
Représentation graphique de la fonction a : lorsque le point P se rapproche du point I, x tend vers 1 par la droite et le point K (x,.a(x)) dessine une courbe qui se rapproche de la droite verticale x = 1, sans jamais la couper.

On a

$$\lim_{\substack{x \to 1 \\ >}} a(x) = \lim_{\substack{x \to 1 \\ >}} \frac{x^2}{x - 1} = \left(\frac{1}{0_+}\right) = +\infty .$$

Cette limite " infinie" traduit la présence d'une droite verticale (d'équation x = 1) qui " accompagne" la courbe de la fonction a lorsque x tend vers 1.

Construction avec Cabri-géomètre :



De plus a'(x) =
$$\frac{x(x-2)}{(x-1)^2}$$
 et a'(x) = 0 et x > 1 \Leftrightarrow x = 2 et a'(x) > 0 \Leftrightarrow x > 2;

L'aire du triangle MNP est donc maximale en x = 2 et elle vaut a(2) = 4